Sportomics, Metabolic Health, and Utilization of Functional Medicine Testing

Sportomics, Metabolic Health, and Utilization of Functional Medicine Testing

Jeffrey B. Kreher, MD, FAAP, IFMCP

Lahnor Powell, ND, MPH

Medical Education Specialist | Department of Medical Affairs | Genova Diagnostics

Jeffrey B. Kreher, MD, FAAP, IFMCP

Wellstead, LLC CMO and Co-Founder
Integrative Functional and Lifestyle Medicine, IFM Certified
Sports Medicine, Physical Activity and Exercise Specialist
Board Certified Internal Medicine and Pediatrics
Certificate of Added Qualification in Primary Care Sports Medicine

Technical Issues \& Clinical Questions

Please type any technical issue or clinical question into either the "Chat" or "Questions" boxes, making sure to send them to "Organizer" at any time during the webinar.

July 2019 LiveGDX
Webinar ID: 642-914-411
GoToWebinar

DISCLAIMER: Please note that any and all emails provided may be used for

Need More Resources?

Explore
 WWW.GDX.NET

for more information and educational resources, including...

LEARN GDX - Brief video modules LIVE GDX - Previous webinar recordings GI University - Focused learning modules
${ }^{\text {MY }}$ GDX - Order materials and get results

* Home / Clinicians / Medical Education

Medical Education

Genova Diagnostics is an internationally renowned medical testing facility committed to the highest professional standards. The Medical Affairs Team provides educational support in a broad array of formats, including complementary phone consultations to healthcare professionals with Genova Diagnostic accou

8

Educational Modules
Focused Universities supporting you in your mission to help patients achieve the best possible health.

More \rightarrow

Bookstore
Books recommended by Genova iiagnostics to help support your health and well-being.

More \rightarrow
$\mathbf{G}^{\text {aix }}$ LearnGDX
Brief video modules designed to help you understand and clinically apply Genova's broad array of diagnostic testing.

More -

Consultations
Request a complementary phone session
with one of our Medical Education Specialists, available to existing clients. More \rightarrow

66 Providing comprehensive and innovative clinical laboratory services for the prevention, dlagnosis and treatment of complex chronic disease..

Patient Dropship/Online Registration

https://youtu.be/YHdOID9GVG4

Sportomics, Metabolic Health, and Utilization of Functional Medicine Testing

Sportomics, Metabolic Health, and Utilization of Functional Medicine Testing

Jeffrey B. Kreher, MD, FAAP, IFMCP

Objectives for This Presentation

- At the conclusion of this program, participants will be able to:
- Define Sportomics and its application to Exercise Performance and Metabolic Health
- Identify and understand changes in metabolome and microbiome associated with exercise
- Apply metabolomic and microbiome Functional Medicine testing to inform recommendations for improved exercise performance and metabolic health

OUTLINE

- Introduction to "SPORTOMICS"
- Exercise and Metabolome
- Exercise and Microbiome
- Sportomics and Exercise Performance
- Role of functional medicine testing
- Sportomics and Metabolic Health
- Role of functional medicine testing

SPORTOMICS . . .

- Applies metabolomics to investigate the metabolic effects of physical exercise on individuals
- Works to advance knowledge in integrative physiology and the systems biology of movement with a goal to translate markers associated with metabolic challenges of training, or competition, to similar stresses of disease settings

SPORTOMICS: CLINCIAL RELEVANCE

- EXERCISE = Medicine
- With a great "benefit to risk" profile
- Three major clinically relevant questions:
- What is "TIPPING POINT"?
- Where/When/How does exercise become less health promoting?
- Who are the "RESPONDERS" vs. "NONRESPONDERS"?
- How do you make a "NON-RESPONDER" a "RESPONDER"?
- EXERCISE = INVESTIGATIVE TOOL as a STRESSOR
to systems biology and integrative physiology

SPORTOMICS

MULTI-VARIATE

SYSTEMS BIOLOGY

SPORTOMICS

- Must go beyond correlation/association studies
- Meta-omics and computational tools
- Potential for machine learning to predict exerciseinduce alteration and performance measures to distinguish responders and non responders
- by Zeevi et al

SPORTOMICS: METABOLOME

- SUMMARY:
- Substantial heterogeneity of studies
- Volume was biggest driver of changes
- Generally short-lived response to acute exercise
- However, changes are apparent in consistent movers
- Multifactorial dose response relationship

SPORTOMICS: METABOLOME

- ACUTE EXERCISE:

- Responses resolved minutes to hours later
- Greater changes in less trained in response to marathon ${ }^{1}$
- INCREASE:
- Lactate, pyruvate, TCA intermediates, fatty acids, acyl-carnitines, ketone bodies ${ }^{2}$
- DECREASE:

- Bile acids ${ }^{2}$

SPORTOMICS:

METABOLOME \& PERFORMANCE

- CHRONIC EXERCISE:
- "Coherently healthier metabolic profile"
- Lower amino acids (especially isoleucine)
- Changes in several lipid metabolites
- Saturated \rightarrow polyunsaturated profile
- Lower VLDL \& TG and Higher HDL
- Difference in intermediary metabolism, fuel substrate utilization, glucose transport, fatty acid oxidation, oxidative stress, steroid biosynthesis, insulin signaling
- Epigenomic, Transcriptomic, \& Proteomic studies are fewer but confirm gene changes

Glucose Lysophosphatidylethanolamines

SPORTOMICS: METABOLOME

SPORTOMICS:

METABOLOME \&

 PERFORMANCE \& FUNCTIONAL TESTING- 38yo year-round athlete
- In winter with significant XC and downhill skiing routine

SPORTOMICS: MICROBIOME

- 2014: $1^{\text {st }}$ report of exercise increasing gut microbial diversity in humans
- Low BMI control and athletes with high BMI significantly higher proportions of Akkermansia muciniphila
- Greater microbiome diversity
- HOWEVER, suggestion that exercise and protein intake were drivers of diversity

SPORTOMICS: MICROBIOME

- Greater diversity compared to nonathletes ${ }^{1,2}$
- Greater growth of certain species such as Akkermansia muciniphila 1,3,4
- Relative increase in SCFA ${ }^{2,5}$
- Direct association between VO2max and F / B ratio ${ }^{6}$

SPORTOMICS: MICROBIOME

SPORTOMICS:

MICROBIOME \& PERFORMANCE

Fermentable fiber \& microbes

Fermentable fiber \& microbes

SPORTOMICS:

MICROBIOME \& PERFORMANCE

Benefits for the athlete

- Production of bioactive metabolites (i.e.short chain fatty acids, neurotransmitters)
- Maintenance of intestinal barrier function
- Modulation of immune system
- Improved energy harvest and utilization
- Regulation of muscle metabolism

EXERCISE \& PERFORMANCE

Benefits on the gut microbiota

- Higher microbial richness
- Higher abundancy of beneficial Akkermansia, Veillonella, Prevotella
- Selection advantage for lactate-utilizing bacteria

SPORTOMICS:

MICROBIOME \& PERFORMANCE

GENOVA

SPORTOMICS:

MICROBIOME \& PERFORMANCE

- INCREASED Veillonella spp (esp. Veillonella atypica) post marathon
- Veillonella atypica gavage \rightarrow increased exercise performance in mice

SPORTOMICS:

MICROBIOME \& PERFORMANCE

- IMPROVED EXERCISE PERFORMANCE in mice with Veillonella atypica gavage
- PROPOSED MECHANISM OF ACTION:
- LACTATE production and conversion into propionate

SPORTOMICS:

MICROBIOME \& PERFORMANCE

- Veillonella spp. = oral nitrate-reducing bacteria
- ADDITIONAL PROPOSED MECHANISM OF ACTION: Nitric oxide (NO) production by the oral microbiome

Dietary nitrate

\longrightarrow

eNOS

Increased mitochondrial efficiency

Increased muscle force

SPORTOMICS:
MICROBIOME \& PERFORMANCE \& FUNCTIONAL TESTING

Gastrointestinal Microbiome (PCR)			
Sommensal Bacteria (PCR)	Result $\mathrm{CFH} / \mathrm{g}$ stool		Reference Range CFU/g stool
Bacteroidetes Phylum			
Bacteroides-Prevotella group	2.4E8	$\longmapsto \quad 1$	3.4E6-1.5E9
Bacteroides vulgatus	1.2E9	\# , , , ,	$<2.2 \mathrm{EP}$
Barnesiella spp.	3.6E7	$\bigcirc \bigcirc$	< $=1.6 \mathrm{E} 8$
Odoribacter spp.	7.157	¢ , , , -	<=8.0E7
Prevotella spp.	1.4E8 H	1 1 1	1.4E5-1.6E7
Firmicutes Phylum			
Anaerotruncus colihominis	3.4 EF H	\# 1 , 1	$<=3.2 \mathrm{EF}$
Butyrivibrio crossotus	5.0 E 7 H	1 , ,	5.5E3-5.9E5
Clostridium spp. Lactate PRODUCER ${ }^{2.158}$		$\longmapsto \quad 1$	1.7E8-1.5E10
Coprococcus eutactus	1.0E8	¢ 1 , ¢ ,	$<=1.2 \mathrm{E} 8$
Faecalibacterium prausnitzii	7.5E8	¢ , 1 1	5.8E7-4.7E9
Lactobacillus spp.	1.6E8	セ, 1	8.3E6-5.2E9
Pseudoflavonifractorspp.	3.0 E 8 H	¢ 1 ,	4.2E5-1.3E8
Roseburia spp. Lactate D	7.6E7 L	- 1 , 1	1.3E8-1.2E10
Ruminococcus spp.	1.9 E 9 H	1 1 1	9.5E7-1.6E9
Veillonella spp.	1.5 E 8 H	1 1 ,	1.2E5-5.5E7
Actinobacteria Phylum			
Bifidobacterium spp.	1.5E8	$\because \bullet 1$	< $=6.4 \mathrm{E} 9$
Biffobacterium longum	1.4E8	ए , , 1	$<=7.2 \mathrm{E} 8$
Collinsella aerofaciens	5.1 E 8	- , , 1	1.4E7-1.9E9
Proteobacteria Phylum			
Desulfovibrio piger	$8.7 \mathrm{E7}$ H	$1 \quad 1 \quad 1$	< 1.8 EE 7
Escherichia coli	1.3 E 8 H	- , ,	9.0E4-4.6E7
Oxalobacter formigenes	5.0 E 7 H	$\bigcirc \quad 1 \quad \longrightarrow$	<=1.5E7
Euryarchaeota Phylum			
Methanobrevibacter smithii	1.4 EB H	$\xrightarrow{+1}$	< $=8.6$ E7 7
Fusobacteria Phylum			
Fusobacterium spp.	2.3 E 7 H	1 1 , +	< $=2.4 \mathrm{E} 5$
Verrucomicrobia Phylum			
Akkermansia muciniphila	3.1 E7	$\bigcirc 1+$	$>=1.2 \mathrm{E} 6$
Firmicutes/Bacteroidetes Ratio			
Firmicutes/Bacteroidetes (F/B Ratio)	11 L	-1 1 1	12-620

SPORTOMICS:

MICROBIOME \& PERFORMANCE \& FUNCTIONAL TESTING

- 40yo with chronic fatigue syndrome, pain amplification syndrome and exercise intolerance - previously failed graded exercise program

Gastrointestinal Microbiome (PCR)**			
Commensal Bacteria (PCR)	Result cFU/g stool	1 st QUINTILE DISTRIBUTION 2nd 3rd 4 th 5th	Reference Range CFU/g stool
Bacteroidetes Phylum			
Bacteroides-Prevotella group	1.3 E 8		3.4E6-1.5E9
Bacteroides vulgatus	2.4 EF	$\because \bullet 1$	< $=2.2 \mathrm{E} 9$
Barresiella spp.	1.2 ET	¢ , 1 , ,	< $=1.6 \mathrm{E} 8$
Odoribacter spp.	7.2E6	ए, 1, 1	< $=8.0 \mathrm{E} 7$
Prevotella spp.	4.8E6	\longmapsto 1 , 1 1	1.4E5-1.6E7
Firmicutes Phylum			
Anaerotruncus colihominis	9.4 E 5	■ - , 1	$\ll 3.2 \mathrm{E} 7$
Butyrivibrio crossotus	<DL L	-1 1 1	5.5E3-5.9E5
Clostridium spp.	6.8E8	$\longmapsto \quad 1$	1.7E8-1.5E10
Coprococcus eutactus	3.8E5	ए, 1 1	< $=1.2 \mathrm{E} 8$
Faecalibacterium prausnitzii	6.0 E7	$\longmapsto \quad 1$	5.8E7-4.7E9
Lactobacillus spp.	1.6E8	-1 1 1 1	8.3E6-5.2E9
Pseudoflavonifactorspp.	2.3 E7	¢ , , , ,	4.2E5-1.3E8
Roseburia spp.	3.3 E7 L	-11 1-1	1.3E8-1.2E10
Ruminococcus spp.	5.2 E 7 L	-11 1 1	9.5E7-1.6E9
Veillonella spp.	<DL L	-11 1 1	1.2E5-5.5E7
Actinobacteria Phylum			
Bifidobacterium spp.	2.1 E7		$<=6.4 \mathrm{E} 9$
Bifidobacterium longum	<DL	$\longmapsto \quad 1$	< $=7.2 \mathrm{E} 8$
Collinsella aerofaciens	1.7E8	1, 1, 1	1.4E7-1.9E9
Proteobacteria Phylum			
Desulfovibrio piger	8.6 E 5	1 1 -	< $=1.8 \mathrm{E} 7$
Escherichia coli	<DL L	- 1 1 1	9.0E4-4.6E7
Oxalobacter formigenes	1.9 E 6	$\longmapsto \quad 1$	<=1.5E7
Euryarchasota Phylum			
Methanobrevibacter smithii	6.4E6		< $=8.6 \mathrm{EE} 7$
Fusobacteria Phylum			
Fusobacterium spp.	1.1E4	$\bigcirc \quad 1$	< $=2.4$ E 5
Verrucomicrobia Phylum			
Akkermansia muciniphila	1.4 E 7		> $=1.2 \mathrm{E} 6$
Firmicutes/Bacteroidetes Ratio			
Firmicutes/Bacteroidetes (F/B Ratio)	7 L	1111	12-620

SPORTOMICS: METABOLIC HEALTH

- LOW cardiorespiratory fitness independent predictor of cardiometabolic disease and mortality ${ }^{1}$
- Exercise capacity more powerful predictor of mortality from cardiometabolic disease than other established risk factors ${ }^{2}$
- VO2max is highly correlated with skeletal muscle mitochondrial capacity ${ }^{3}$

SPORTOMICS: METABOLIC HEALTH

- METABOLIC FLEXIBILITY
- Ability to appropriately adjust substrate oxidation relative to substrate availability
- LACTATE SHUTTLE:
- Lactate = gluconeogenic precursor
- Increased with increased energy expenditure or reduction in energy from aerobic oxidation

SPORTOMICS: METABOLIC HEALTH

- LACTATE

- Glucose as specific fuel and lactate as universal fuel ${ }^{1}$
- Lactate as a substrate for generating fuel
- Radiolabeled lactate \rightarrow labeling of TCA intermediates greater than radiolabeled glucose ${ }^{2}$

Lactate-producing cell

Glucose

Lactate-consuming cell

SPORTOMICS: METABOLIC HEALTH

- Metabolic Disease
- Obesity
- Insulin Resistance
- With OBESITY/INCREASED VAT:
- Skeletal muscle tissue minimally increases glucose oxidation with insulin and preferentially partitions it with net lactate release ${ }^{1}$
- "VISCIOUS CORI CYCLE" 2
- Due to impaired pyruvate oxidation

SPORTOMICS: METABOLIC HEALTH

- Metabolic Disease
- Obesity
- Insulin Resistance

SPORTOMICS:

METABOLIC HEALTH \& FUNCTIONAL TESTING

- EVIDENCE of "Vicious Cori Cycle" and impaired metabolic health
- ELEVATED Lactic Acid
(especially relative to Pyruvic Acid)
- LOW Citric acid
- Often seen in severe obesity
- LOWER TCA intermediates ${ }^{1}$
- Labeled by some as "hypometabolic state" or "mitochondria retraction"
- +/- HIGHER Malic Acid/Succinic Acid

SPORTOMICS: METABOLIC HEALTH

- EXERCISE \& DIABETES PREVENTION

- Overweight, prediabetic treatment-naïve males
- Identified responders to exercise intervention (improved glucose metabolism \& insulin resistance)
- Increased capacity for increased SCFA synthesis
- Increased capacity for BCAA catabolism
- FMT of responders improved mice response to exercise
- Through machine learning then predicted glycemic response to exercise in additional 30 subjects

Saccharolysis

SPORTOMICS:

METABOLIC HEALTH \& FUNCTIONAL TESTING

- FUNCTIONAL MEDICINE TESTING INFORMED RECOMMENDATIONS for metabolic health \& insulin resistance
- IF EXERCISING \& METABOLIC DISEASE
- POTENTIAL NON-RESPONDER WITH ..
- Elevated BCAAs and AAAs; Elevated glutamate and Decreased GABA; Elevated cysteine \& methionine
- PROBABLE RESPONDER WITH ...
- Increased Firmicutes \& SCFAs; Increased lactate utilizers // (absence of non-responder characteristics)
- IF NOT EXERCISING \& AT RISK FOR METABOLIC DISEASE
- POTENTIAL RESPONDER WITH ..
- Elevated Bacteroides // Elevated GABA
- IF NON-RESPONDER OR POTENTIAL NON-RESPONDER
- Work to elevate SCFAs (fiber, resistant starches, fermented foods/probiotics, butyrate)
- Decrease exercise volume/intensity

THANK YOU FOR YOUR TIME AND ATTENTION

Jeffrey B. Kreher, MD, FAAP, IFMCP
CMO and Co-Founder
wellstead, LLC
Integrative Functional and Lifestyle Medicine, IFM Certified
Sports Medicine, Physical Activity and Exercise Specialist
Board Certified Internal Medicine
Board Certified Pediatrics
Certificate of Added Qualification in Primary Care Sports Medicine
www.wellsteadhealth.com
N wellstead

US Client Services: 800-522-4762
UK Client Services: 020.8336.7750

Jeffrey B. Kreher, MD, FAAP, IFMCP
Presenter
We look forward to hearing from you!

Upcoming LIVE GDX Webinar Topics

Register for upcoming LIVE GDX Webinars online at www.GDX.NET

Patient Dropship/Online Registration: https://youtu.be/YHdOID9GVG4

Subscribe to our weekly Podcast at www.GDX.NET/THE-LAB-REPORT

Sportomics, Metabolic Health, and Utilization of Functional Medicine Testing

Sportomics, Metabolic Health, and Utilization of Functional Medicine Testing

Jeffrey B. Kreher, MD, FAAP, IFMCP

