Discover a New Way to Look at Nutrition

NutrEval

redesigned REIMAGINED

CLINICIAN INFORMATION

NutrEval is the most comprehensive functional and nutritional assessment available. It is designed to help practitioners identify root causes of dysfunction and provide a systems-based approach to help patients overcome chronic conditions and live a healthier life.

NutrEval Assesses:

- Organic Acids providing insight into nutritional cofactor needs, digestive issues, cellular energy production, neurotransmitter metabolism, detoxification, and now oxalates
- **Oxidative Stress** indicating problems with antioxidant capacity and oxidative damage
- Amino Acids looking at essential and nonessential amino acids to indicate poor dietary intake, maldigestion or malabsorption, and amino acid metabolism
- Essential and Metabolic Fatty Acids reflecting dietary intake and metabolism of fatty acids measured in RBC's to assess important fatty acid imbalances
- Nutrient & Toxic Elements providing a window into short-term exposures to various toxins along with direct evaluation of key minerals

NutrEval Add-On Options:

• **Genomics** – offers four important genetic variants – ApoE, MTHFR, COMT, and TNF-α for enhanced therapy personalization

Why Use NutrEval?

Metabolism is a complex process where dietary nutrients are used to perform thousands of critical reactions. Nutrient insufficiencies lead to abnormal cellular and tissue function potentially leading to disease.

NutrEval may offer insight in:

- Mood disorders^{1,2}
- Cardiovascular disease^{3,4}
- Metabolic syndrome^{5,6}
- Fatigue^{7,8}

The NutrEval Report Offers:

- Nutrient recommendations for key vitamins, minerals, amino acids, fatty acids, and digestive support
- Functional pillars with a built-in scoring system to guide therapy for methylation support, toxic exposures, mitochondrial dysfunction, fatty acid imbalances, and oxidative stress
- Interpretation-at-a-glance pages for patient education
- Dynamic biochemical pathway charts for clearer understanding
- Vitamin D direct serum measurement of 25-hydroxyvitamin D

CHRONIC FATIGUE

OPTIMIZED HEALTH & SPORTS FITNESS

- Obesity and weight issues^{9,10}
 Cognitive decline^{11,12}
- Athletic optimization^{13,14}
- Malnutrition¹⁵

Results overview

63 Zillicoa Street Asheville, NC 28801 © Genova Diagnostics

Patient: SAMPLE PATIENT DOB:

Sex:

MRN:

8-OHdG

Taurine

Citric Acid

cis-Aconitic Acid

Glutathione

 ∇

 ∇

Δ

FIGLU

Methylmalonic Acid

Glutaric Acid

Pyruvic Acid

Isocitric Acid

Succinic Acid

Malic Acid

Adipic Acid Suberic Acid

Manganese

cis-Aconitic Acid

α-Ketoglutaric Acid

Lactic Acid

Citric Acid

Δ

 ∇

 \triangle

 \triangle

Δ

 Arachidonic Acid

y-Linolenic Acid

Dihomo-y-linolenic Acid

Linoleic Acid

3000 NutrEval FM	IV - Urine and Blood			
		Results Overview		
amino a oxidative stress Mitoch dysfu essential &	ondrial NCTION Metabolic fatty acids	Anic Acids		trient & toxic elements
	Fu	Inctional Imbalance S	cores	
Key 0-4 : 1	Minimal Need for Support	5-7 : Moderate Need for St	upport 8-10 : High N	Need for Support
Need for Antioxidant Suppor	Need for Mitochondrial Support	Need for Inflammation Support	Need for Reduced Exposure	Need for Methylation Support
	9			
Cystine	Glutathione	Omega-3 Index 🛛 🔻	Lead •	Methylmalonic Acid
Cysteine	CoQ10	Omega 6/3 Ratio	Mercury	Methionine
Lipid Peroxides	🛆 Magnesium 🔍 🔍	α-Linolenic Acid	α-Hydroxyisobutyric Acid 🛛 🛆	Glutathione

 ∇

Δ

α-Ketophenylacetic Acid

Arsenic

Cadmium

Orotic Acid

Citric Acid

Pyroglutamic Acid

cis-Aconitic Acid

Isocitric Acid

Glutaric Acid

Δ

Δ

٨

FIGLU

Sarcosine

Arginine

Glycine

Serine

Creatinine

Vanilmandelic Acid

Nutrient Need Overview

Nutrient Need Overview					
	Nutrient Need		Suggested	Provider	
	0 1 2 3 4 5 6 7 8 9 10	DRI	Recommendations	Recommendations	
Antioxidants					
Vitamin A		2,333 IU	3,000 IU		
Vitamin C	\blacklozenge	75 mg	500 mg		
Vitamin E / Tocopherols		22 IU	100 IU		
α-Lipoic Acid			200 mg		
CoQ10	←		60 mg		
Glutathione					
Plant-based Antioxidants					
B-Vitamins					
Thiamin - B1	\bullet	1.1 mg	25 mg		
Riboflavin - B2		1.1 mg	50 mg		
Niacin - B3		14 mg	50 mg		
Pyridoxine - B6	\bullet	1.3 mg	25 mg		
Biotin - B7	\bullet	30 mcg	200 mcg		
Folate - B9		400 mcg	1,200 mcg		
Cobalamin - B12		2.4 mcg	1,000 mcg		
Minerals					
Magnesium	•	320 mg	800 mg		
Manganese		1.8 mg	3.0 mg		
Molybdenum	(45 mcg	75 mcg		
Zinc		8 mg	10 mg		
Essential Fatty Acids					
Omega-3 Fatty Acids		500 mg	1,000 mg		
GI Support					
Digestive Support/Enzymes	•				
Microbiome Support/Probiotics	•		25 billion CFU		

Amino Acids (mg/day)

Arginine		Methionine
Asparagine		Phenylalan
Cysteine	0	Serine
Glutamine		Taurine
Glycine	0	Threonine
Histidine		Tryptophan
Isoleucine		Tyrosine
Leucine	0	Valine
Lysine		

hionine	\subset	0	\supset
nylalanine	\subset	0	\supset
ne	\subset	0	\supset
rine	\subset	929	\supset
eonine	\subset	0	\supset
otophan	\subset	0	\supset
osine	\subset	0	\supset
ne	\subset	0	\supset

Recommendations for age and gender-specific supplementation are set by comparing levels of nutrient functional need to optimal levels as described in the peer-reviewed literature. They are provided as guidance for short-term support of nutritional deficiencies only.

NutrEval

The Nutrient Need Overview is provided at the request of the ordering practitioner. Any application of it as a therapeutic intervention is to be determined by the ordering practitioner.

Interpretation At-A-Glance

Interpretation At-A-Glance

Antioxidant Needs

Vitamin A

- Beta-carotene & other carotenoids are converted to vitamin A (retinol), involved in vision, antioxidant & immune function, gene expression & cell growth.
- Vitamin A deficiency may occur with chronic alcoholism, zinc deficiency, hypothyroidism, or oral contraceptives containing estrogen & progestin.
- Deficiency may result in night blindness, impaired immunity, healing & tissue regeneration, increased risk of infection, leukoplakia or keratosis.
- Food sources include cod liver oil, fortified cereals & milk, eggs, sweet potato, pumpkin, carrot, cantaloupe, mango, spinach, broccoli, kale & butternut squash.

Vitamin E / Tocopherols

- Deficiency may occur with malabsorption, cholestyramine, colestipol, isoniazid, orlistat, olestra and certain anti-convulsants (e.g., phenobarbital, phenytoin).
- Deficiency may result in peripheral neuropathy, ataxia, muscle weakness, retinopathy, and increased risk of CVD, prostate cancer and cataracts.
- Food sources include oils (olive, soy, corn, canola, safflower, sunflower), eggs, nuts, seeds, spinach, carrots, avocado, dark leafy greens and wheat germ.

CoQ10

- CoQ10 is a powerful antioxidant that is synthesized in the body and contained in cell membranes. CoQ10 is also essential for energy production & pH regulation.
- CoQ10 deficiency may occur with HMG-CoA reductase inhibitors (statins), several anti-diabetic medication classes (biguanides, sulfonylureas) or beta-blockers.
- Low levels may aggravate oxidative stress, diabetes, cancer, congestive heart failure, cardiac arrhythmias, gingivitis and neurologic diseases.
- Main food sources include meat, poultry, fish, soybean, canola oil, nuts and whole grains. Moderate sources include fruits, vegetables, eggs and dairy.

Plant-based Antioxidants

7

6

- Oxidative stress is the imbalance between the production of free radicals and the body's ability to readily detoxify these reactive species and/or repair the resulting damage with anti-oxidants.
- Oxidative stress can be endogenous (energy production and inflammation) or exogenous (exercise, exposure to environmental toxins).
- Oxidative stress has been implicated clinically in the development of neurodegenerative diseases, cardiovascular diseases and chronic fatigue syndrome.
- Antioxidants may be found in whole food sources (e.g., brightly colored fruits & vegetables, green tea, turmeric) as well as nutraceuticals (e.g., resveratrol, EGCG, lutein, lycopene, ginkgo, milk thistle, etc.).

Vitamin C

★

- Vitamin C is an antioxidant (also used in the regeneration of other antioxidants). It is involved in cholesterol metabolism, the production & function of WBCs and antibodies, and the synthesis of collagen, norepinephrine and carnitine.
- Deficiency may occur with oral contraceptives, aspirin, diuretics or NSAIDs.
 Deficiency can result in scurvy, swollen gingiva, periodontal destruction, loose
- teeth, sore mouth, soft tissue ulcerations, or increased risk of infection.
- Food sources include oranges, grapefruit, strawberries, tomato, sweet red pepper, broccoli and potato.

a-Lipoic Acid

- α -Lipoic acid plays an important role in energy production, antioxidant activity (including the regeneration of vitamin C and glutathione), insulin signaling, cell signaling and the catabolism of α -keto acids and amino acids.
- High biotin intake can compete with lipoic acid for cell membrane entry.
- Optimal levels of α-lipoic acid may improve glucose utilization and protect against diabetic neuropathy, vascular disease and age-related cognitive decline.
- Main food sources include organ meats, spinach and broccoli. Lesser sources include tomato, peas, Brussels sprouts and brewer's yeast.

Glutathione

6

- Glutathione (GSH) is composed of cysteine, glutamine & glycine. GSH is a source of sulfate and plays a key role in antioxidant activity and detoxification of toxins.
- GSH requirement is increased with high-fat diets, cigarette smoke, cystinuria, chronic alcoholism, chronic acetaminophen use, infection, inflammation and toxic exposure.
- Deficiency may result in oxidative stress & damage, impaired detoxification, altered immunity, macular degeneration and increased risk of chronic illness.
- Food sources of GSH precursors include meats, poultry, fish, soy, corn, nuts, seeds, wheat germ, milk and cheese.

KEY

Interpretation At-A-Glance

Interpretation At-A-Glance

B-Vitamin Needs

Thiamin - B1

- B1 is a required cofactor for enzymes involved in energy production from food, and for the synthesis of ATP, GTP, DNA, RNA and NADPH.
- Low B1 can result from chronic alcoholism, diuretics, digoxin, oral contraceptives and HRT, or large amounts of tea & coffee (contain anti-B1 factors).
- B1 deficiency may lead to dry beriberi (e.g., neuropathy, muscle weakness), wet beriberi (e.g., cardiac problems, edema), encephalopathy or dementia.
- Food sources include lentils, whole grains, wheat germ, Brazil nuts, peas, organ meats, brewer's yeast, blackstrap molasses, spinach, milk & eggs.

Riboflavin - B2

- B2 is a key component of enzymes involved in antioxidant function, energy production, detoxification, methionine metabolism and vitamin activation.
- Low B2 may result from chronic alcoholism, some anti-psychotic medications, oral contraceptives, tricyclic antidepressants, quinacrine or adriamycin.
- B2 deficiency may result in oxidative stress, mitochondrial dysfunction, low uric acid, low B3 or B6, high homocysteine, anemia or oral & throat inflammation.
- Food sources include milk, cheese, eggs, whole grains, beef, chicken, wheat germ, fish, broccoli, asparagus, spinach, mushrooms and almonds.

Niacin - B3

- B3 is used to form NAD and NADP, involved in energy production from food, fatty acid & cholesterol synthesis, cell signaling, DNA repair & cell differentiation.
- Low B3 may result from deficiencies of tryptophan (B3 precursor), B6, B2 or Fe (cofactors in B3 production), or from long-term isoniazid or oral contraceptive use.
- B3 deficiency may result in pellagra (dermatitis, diarrhea, dementia), neurologic symptoms (e.g., depression, memory loss), bright red tongue or fatigue.
- Food sources include poultry, beef, organ meats, fish, whole grains, peanuts, seeds, lentils, brewer's yeast and lima beans.

Pyridoxine - B6

B6 (as P5P) is a cofactor for enzymes involved in glycogenolysis & gluconeogenesis, and synthesis of neurotransmitters, heme, B3, RBCs and nucleic acids.

NutrE

- Low B6 may result from chronic alcoholism, long-term diuretics, estrogens (oral contraceptives and HRT), anti-TB meds, penicillamine, L-DOPA or digoxin.
- B6 deficiency may result in neurologic symptoms (e.g., irritability, depression, seizures), oral inflammation, impaired immunity or increased homocysteine.
- Food sources include poultry, beef, beef liver, fish, whole grains, wheat germ, soybean, lentils, nuts & seeds, potato, spinach and carrots.

Biotin - B7

- Biotin is a cofactor for enzymes involved in functions such as fatty acid synthesis, mitochondrial FA oxidation, gluconeogenesis and DNA replication & transcription.
- Deficiency may result from certain inborn errors, chronic intake of raw egg whites, long-term TPN, anticonvulsants, high-dose B5, sulfa drugs & other antibiotics.
- Low levels may result in neurologic symptoms (e.g., paresthesias, depression), hair loss, scaly rash on face or genitals or impaired immunity.
- Food sources include yeast, whole grains, wheat germ, eggs, cheese, liver, meats, fish, wheat, nuts & seeds, avocado, raspberries, sweet potato and cauliflower.

Folate - B9

- Folate plays a key role in coenzymes involved in DNA and SAMe synthesis, methylation, nucleic acids & amino acid metabolism and RBC production.
- Low folate may result from alcoholism, high-dose NSAIDs, diabetic meds, H2 blockers, some diuretics and anti-convulsants, SSRIs, methotrexate, trimethoprim, pyrimethamine, triamterene, sulfasalazine or cholestyramine.
- Folate deficiency can result in anemia, fatigue, low methionine, increased homocysteine, impaired immunity, heart disease, birth defects and CA risk.
- Food sources include fortified grains, green vegetables, beans & legumes.

Cobalamin - B12

- B12 plays important roles in energy production from fats & proteins, methylation, synthesis of hemoglobin & RBCs, and maintenance of nerve cells, DNA & RNA.
- Low B12 may result from alcoholism, malabsorption, hypochlorhydria (e.g., from atrophic gastritis, H. pylori infection, pernicious anemia, H2 blockers, PPIs), vegan diets, diabetic meds, cholestyramine, chloramphenicol, neomycin or colchicine.

B12 deficiency can lead to anemia, fatigue, neurologic symptoms (e.g., paresthesias, memory loss, depression, dementia), methylation defects or chromosome breaks.

Food sources include shellfish, red meat, poultry, fish, eggs, milk and cheese.

KEY

Interpretation At-A-Glance

Interpretation At-A-Glance

Mineral Needs

Magnesium

8

- Magnesium is involved in >300 metabolic reactions. Key areas include energy production, bone & ATP formation, muscle & nerve conduction and cell signaling
- Deficiency may occur with malabsorption, alcoholism, hyperparathyroidism, renal disorders (wasting), diabetes, diuretics, digoxin or high doses of zinc.
- Low Mg may result in muscle weakness/spasm, constipation, depression, hypertension, arrhythmias, hypocalcemia, hypokalemia or personality changes.
- Food sources include dark leafy greens, oatmeal, buckwheat, unpolished grains, chocolate, milk, nuts & seeds, lima beans and molasses.

Molybdenum

4

- Molybdenum is a cofactor for enzymes that convert sulfites to sulfate, and nucleotides to uric acid, and that help metabolize aldehydes & other toxins.
- Low Mo levels may result from long-term TPN that does not include Mo.
- Mo deficiency may result in increased sulfite, decreased plasma uric acid (and antioxidant function), deficient sulfate, impaired sulfation (detoxification), neurologic disorders or brain damage (if severe deficiency).
- Food sources include buckwheat, beans, grains, nuts, beans, lentils, meats and vegetables (although Mo content of plants depends on soil content).

Manganese

- Impaired absorption of Mn may occur with excess intake of Fe, Ca, Cu, folic acid, or phosphorous compounds, or use of long-term TPN, Mg-containing antacids or laxatives.
- Deficiency may result in impaired bone/connective tissue growth, glucose & lipid dysregulation, infertility, oxidative stress, inflammation or hyperammonemia.
- Food sources include whole grains, legumes, dried fruits, nuts, dark green leafy vegetables, liver, kidney and tea.

Zinc

- Zinc plays a vital role in immunity, protein metabolism, heme synthesis, growth & development, reproduction, digestion and antioxidant function.
- Low levels may occur with malabsorption, alcoholism, chronic diarrhea, diabetes, excess Cu or Fe, diuretics, ACE inhibitors, H2 blockers or digoxin,
- Deficiency can result in hair loss and skin rashes, also impairments in growth & healing, immunity, sexual function, taste & smell and digestion.
- Food sources include oysters, organ meats, soybean, wheat germ, seeds, nuts, red meat, chicken, herring, milk, yeast, leafy and root vegetables.

Essential Fatty Acid Needs

Need for Omega-3s

- Omega-3 (O3) and Omega-6 (O6) fatty acids are polyunsaturated fatty acids that cannot be synthesized by the human body. They are classified as essential nutrients and must be obtained from dietary sources.
- The standard American diet is much higher in O6 than O3 fatty acids. Deficiency of EFAs may result from poor dietary intake and/or poor conversion from food sources.
- EFA deficiency is associated with decreased growth & development of infants and children, dry skin/rash, poor wound healing, and increased risk of infection, cardiovascular and inflammatory diseases.
- Dietary sources of the O6 Linoleic Acid (LA) include vegetable oils, nuts, seeds and some vegetables. Dietary sources of the O3 a-Linolenic Acid (ALA) include flaxseeds, walnuts, and their oils. Fish (mackerel, salmon, sardines) are the major dietary sources of the O3 fatty acids EPA and DHA.

KFY

Interpretation At-A-Glance

Interpretation At-A-Glance

Microbiome & Digestive Support

Microbiome Support/Probiotics

Probiotics have many functions. These include: production of some B vitamins and vitamin K; enhance digestion & absorption; decrease severity of diarrheal illness; modulate of immune function & intestinal permeability.

Alterations of gastrointestinal microflora may result from C-section delivery, antibiotic use, improved sanitation, decreased consumption of fermented foods and use of certain drugs.

 Some of the diseases associated with microflora imbalances include: IBS, IBD, fibromyalgia, chronic fatigue syndrome, obesity, atopic illness, colic and cancer.

Food sources rich in probiotics are yogurt, kefir and fermented foods.

Digestive Support/Enzymes

- Pancreatic enzymes are secreted by the exocrine glands of the pancreas and include protease/peptidase, lipase and amylase.
- Pancreatic exocrine insufficiency may be primary or secondary in nature. Any indication of insufficiency warrants further evaluation for underlying cause (i.e., celiac disease, small intestine villous atrophy, small bowel bacterial overgrowth).
- A high functional need for digestive enzymes suggests that there is an impairment related to digestive capacity.
- Determining the strength of the pancreatic enzyme support depends on the degree of functional impairment. Supplement potency is based on the lipase units present in both prescriptive and non-prescriptive agents.

Functional Imbalances

9

Mitochondrial Dysfunction

Mitochondria are a primary site of generation of reactive oxygen species.
 Oxidative damage is considered an important factor in decline of physiologic function that occurs with aging and stress.

Mitochondrial defects have been identified in cardiovascular disease, fatigue syndromes, neurologic disorders such as Parkinson's and Alzheimer's disease, as well as a variety of genetic conditions. Common nutritional deficiencies can impair mitochondrial efficiency.

Toxic Exposure

Methyl tert-Butyl Ether (MTBE) is a common gasoline additive used to increase octane ratings, and has been found to contaminate ground water supplies where gasoline is stored. Inhalation of MTBE may cause nose and throat irritation, as well as headaches, nausea, dizziness and mental confusion. Animal studies suggest that drinking MTBE may cause gastrointestinal irritation, liver and kidney damage and nervous system effects.

Styrene is classified by the US EPA as a "potential human carcinogen," and is found widely distributed in commercial products such as rubber, plastic, insulation, fiberglass, pipes, food containers and carpet backing.

Levels of these toxic substances should be examined within the context of the body's functional capacity for methylation and need for glutathione.

Need for Methylation

- Methylation is an enzymatic process that is critical for both synthesis and inactivation. DNA, estrogen and neurotransmitter metabolism are all dependent on appropriate methylation activity.
- B vitamins and other nutrients (methionine, magnesium, selenium) functionally support catechol-O-methyltransferase (COMT), the enzyme responsible for methylation.

KEY

Cause of Deficiency

• Kreb Cycle Interpretation

Oxidative Stress & Mitochondrial Dysfunction

Results - Organic Acids

	Organi	c Acids		
Malabsorption & Dysbiosis Markers		Vitamin Markers	;	
Malabsorption Markers	Reference Range	Branched-Chain (Catabolites (B1, B2, B3, ALA)	Reference Range
Indoleacetic Acid	<= 4.2	α-Ketoadipic Acid	1.3	<= 1.7
0.09 Phenylacetic Acid	<= 0.12	α-Ketoisovaleric Acid	0.27	<= 0.97
Dysbiosis Markers		α-Ketoisocaproic Acid	0.30	<= 0.89
Dihydroxyphenylpropionic	<= 5.3	α-Keto-β-Methylvaleric Acid	1.3	<= 2.1
3-Hydroxyphenylacetic	<= 8.1	Glutaric Acid		<= 0.51
4-Hydroxyphenylacetic 40	<= 29	Isovalerylglycine	2.5	<= 3.7
0 Benzoic Acid	.18 ♦ <= 0.05	Methylation Marke	ers (Folate, B12)	
Hippuric Acid	<= 603	Formiminoglutamic Acid (FIGlu)	3	.8 <= 1.5
Yeast / Fungal Dysbiosis Markers		Methylmalonic Acid	1.3	<= 1.9
D-Arabinitol	<= 36	Biotin Markers		
Citramalic Acid	2.1 ♦ <= 5.8	3-Hydroxypropionic Acid	22	5-22
<dl Tartaric Acid</dl 	<= 15	3-Hydroxyisovaleric Acid	5	<= 29
Cellular Energy & Mitochondrial Markers	5	Neurotransmitte	er Metabolites	
Fatty Acid Metabolism	Reference Range	Kynurenine Marke	ers (Vitamin B6)	Reference Range
Fatty Acid Metabolism	Reference Range 5.4 ♦ <= 2.8	Kynurenine Marke	ers (Vitamin B6)	Reference Range
Fatty Acid Metabolism Adipic Acid Suberic Acid	Reference Range .4 ◆ <= 2.8 .3 ◆ <= 2.1	Kynurenine Marke Kynurenic Acid Quinolinic Acid	ers (Vitamin B6) 12 3.4	Reference Range
Fatty Acid Metabolism Adipic Acid Suberic Acid Carbohydrate Metabolism	Reference Range .4 ◆ <= 2.8 .3 ◆ <= 2.1	Kynurenine Marke Kynurenic Acid Quinolinic Acid Kynurenic / Quinolinic Ratio	ers (Vitamin B6)	Reference Range 2.3 <= 7.1 <= 9.1 62 >= 0.44
Fatty Acid Metabolism Adipic Acid Suberic Acid Carbohydrate Metabolism Pyruvic Acid	Reference Range .4 .4 .4 .2.8 .3 .3 .4 .5 .4 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	Kynurenine Marke Kynurenic Acid Quinolinic Acid Kynurenic / Quinolinic Ratio Xanthurenic Acid	ers (Vitamin B6)	Reference Range 2.3 <= 7.1 <= 9.1 62 >= 0.44 <= 0.96
Fatty Acid Metabolism Adipic Acid Suberic Acid Carbohydrate Metabolism Pyruvic Acid 10 Pyruvic Acid 10 10 Pyruvic Acid	Reference Range .4 .4 .4 .5 .3 .4 .5 .3 .5 .3 .5 .3 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	Kynurenine Marke Kynurenic Acid Quinolinic Acid Kynurenic / Quinolinic Ratio Xanthurenic Acid Catecholamine Ma	ers (Vitamin B6)	Reference Range 2.3 <= 7.1 <= 9.1 62 >= 0.44 <= 0.96
Fatty Acid Metabolism Adipic Acid Suberic Acid Carbohydrate Metabolism Pyruvic Acid 10 Pyruvic Acid 10 Pyruvic Acid 0.50 α-Hydroxybutyric Acid	Reference Range .4 .4 .2.8 .3 .4 .2.1 .5 .4 .2.8 .3 .4 .2.8 .3 .4 .2.8 .3 .4 .2.8 .3 .2 .1 .2 .2 .2 .3 .3 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2	Kynurenine Marke Kynurenic Acid Quinolinic Acid Kynurenic / Quinolinic Ratio Xanthurenic Acid Catecholamine Market Homovanillic Acid	ers (Vitamin B6)	Reference Range 2.3 <= 7.1 <= 9.1 62 >= 0.44 <= 0.96 1.2-5.3
Fatty Acid Metabolism Adipic Acid 6 Suberic Acid 6 Carbohydrate Metabolism 7 Pyruvic Acid 10 Lactic Acid 17.8 α-Hydroxybutyric Acid 3.2 β-OH-Butyric Acid 3.2	Reference Range .4 .4 .2.8 .3 .4 .2.1 .3 .4 .2.8 .3 .4 .2.8 .3 .2 .1.9-19.8 .2 .2 .3 .2 .3 .2 .3 .3 .2 .3 .3 .2 .3 .3 .2 .3 .3 .2 .3 .3 .2 .3 .3 .2 .3 .3 .2 .3 .3 .2 .3 .3 .2 .3 .3 .2 .3 .3 .2 .3 .3 .2 .3 .3 .2 .3 .3 .2 .3 .3 .2 .3 .3 .2 .3 .3 .2 .3 .3 .3 .2 .3 .3 .2 .3 .3 .2 .3 .3 .3 .2 .3 .3 .3 .2 .3 .3 .3 .2 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3	Kynurenine Marke Kynurenic Acid Quinolinic Acid Kynurenic / Quinolinic Ratio Xanthurenic Acid Catecholamine Mark Homovanillic Acid	ers (Vitamin B6)	Reference Range 2.3 <= 7.1 <= 9.1 62 >= 0.44 <= 0.96 1.2-5.3 0.4-3.6
Fatty Acid Metabolism Adipic Acid Suberic Acid Suberic Acid Carbohydrate Metabolism Pyruvic Acid 10 Pyruvic Acid 10 Pyruvic Acid 10 Pyruvic Acid 10 9-OH-Butyric Acid β-OH-β-Methylglutaric	Reference Range .4 <= 2.8 .3 <= 2.1 .7-32 1.9-19.8 <= 0.83 <= 2.8 .3 .3 .4 .5 .3 .5 .3 .5 .3 .5 .3 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	Kynurenine Marke Kynurenic Acid Quinolinic Acid Kynurenic / Quinolinic Ratio Xanthurenic Acid Catecholamine Ma Homovanillic Acid Vanilmandelic Acid 3-Methyl-4-OH- phenylglycol	ers (Vitamin B6)	Reference Range 2.3 <= 7.1 <= 9.1 62 >= 0.44 <= 0.96 1.2-5.3 0.4-3.6 0.02-0.22
Fatty Acid Metabolism Adipic Acid Suberic Acid Suberic Acid Carbohydrate Metabolism Pyruvic Acid 10 Pyruvic Acid 12 Acid 6-OH-Butyric Acid β-OH-β-Methylglutaric Call 6-OH-β-Methylglutaric 70 70 70 70 70 70 70 70 >	Reference Range .4 <= 2.8 .3 <= 2.1 7-32 1.9-19.8 <= 0.83 <= 2.8 <= 2.8 <= 15	Kynurenine Marke Kynurenic Acid Quinolinic Acid Kynurenic / Quinolinic Ratio Xanthurenic Acid Catecholamine Marke Vanilmandelic Acid 3-Methyl-4-OH- phenylglycol Serotonin Marker	ers (Vitamin B6)	Reference Range 2.3 <= 7.1 <= 9.1 62 >= 0.44 <= 0.96 1.2-5.3 0.4-3.6 0.02-0.22
Fatty Acid Metabolism Adipic Acid Suberic Acid Suberic Acid Carbohydrate Metabolism Pyruvic Acid Pyruvic Acid Lactic Acid α-Hydroxybutyric Acid β-OH-β-Methylglutaric Acid Citric Acid	Reference Range • <= 2.8	Kynurenine Marke Kynurenic Acid Quinolinic Acid Kynurenic / Quinolinic Ratio Xanthurenic Acid Catecholamine Marke Homovanillic Acid Vanilmandelic Acid 3-Methyl-4-OH- phenylglycol Serotonin Marker	ers (Vitamin B6)	Reference Range 2.3 <= 7.1 <= 9.1 62 >= 0.44 <= 0.96 1.2-5.3 0.4-3.6 0.02-0.22 3.8-12.1
Fatty Acid Metabolism Adipic Acid Suberic Acid Suberic Acid Carbohydrate Metabolism Pyruvic Acid Pyruvic Acid Lactic Acid α-Hydroxybutyric Acid β-OH-β-Methylglutaric Acid Citric Acid 32 cis-Aconitic Acid	Reference Range A <= 2.8	Kynurenine Marke Kynurenic Acid Quinolinic Acid Kynurenic / Quinolinic Ratio Xanthurenic Acid Catecholamine Marke Homovanillic Acid Vanilmandelic Acid 3-Methyl-4-OH- phenylglycol Serotonin Markers 5-OH-indoleacetic Acid	ers (Vitamin B6)	Reference Range 2.3 <= 7.1 <= 9.1 62 >= 0.44 <= 0.96 1.2-5.3 0.4-3.6 0.02-0.22 3.8-12.1 Reference Range
Fatty Acid Metabolism Adipic Acid Suberic Acid Suberic Acid Carbohydrate Metabolism Pyruvic Acid 10 Pyruvic Acid 10 Adipic Acid Adipic Acid Pyruvic Acid 10 Pyruvic Acid 0.50 α-Hydroxybutyric Acid β-OH-Butyric Acid β-OH-β-Methylglutaric Acid Energy Metabolism Citric Acid 32 cis-Aconitic Acid Isocitric Acid	Reference Range • <= 2.8	Kynurenine Marke Kynurenic Acid Quinolinic Acid Kynurenic / Quinolinic Ratio Xanthurenic Acid Catecholamine Marke Homovanillic Acid Vanilmandelic Acid 3-Methyl-4-OH- phenylglycol Serotonin Markers 5-OH-indoleacetic Acid Toxin & Detoxifi	ers (Vitamin B6)	Reference Range 2.3 <= 7.1 <= 9.1 62 >= 0.44 <= 0.96 1.2-5.3 0.4-3.6 0.02-0.22 3.8-12.1 Reference Range 7 16-34
Fatty Acid Metabolism Adipic Acid Suberic Acid Suberic Acid Carbohydrate Metabolism Pyruvic Acid Pyruvic Acid Lactic Acid α-Hydroxybutyric Acid β-OH-B-Methylglutaric Acid Citric Acid Sige Acid Suberic Acid β-OH-β-Methylglutaric Acid Sige Acid Sige Acid Acid <td>Reference A <= 2.8</td> 3 <= 2.1	Reference A <= 2.8	Kynurenine Marke Kynurenic Acid Quinolinic Acid Kynurenic / Quinolinic Ratio Xanthurenic Acid Catecholamine Marke Homovanillic Acid Vanilmandelic Acid 3-Methyl-4-OH- phenylglycol Serotonin Markers 5-OH-indoleacetic Acid Toxin & Detoxifi Pyroglutamic Acid a-Ketophenylacetic Acid (from Styrene)	ers (Vitamin B6)	Reference Range 2.3 <= 7.1 <= 9.1 62 >= 0.44 <= 0.96 1.2-5.3 0.4-3.6 0.02-0.22 3.8-12.1 Reference Range 7 16-34 <= 0.46
Fatty Acid Metabolism Adipic Acid Suberic Acid Suberic Acid Carbohydrate Metabolism Pyruvic Acid 10 Pyruvic Acid 0.50 α-Hydroxybutyric Acid β-OH-Butyric Acid β-OH-β-Methylglutaric Citric Acid 10 is-Aconitic Acid 32 cis-Aconitic Acid 1socitric Acid 43 α-Ketoglutaric Acid 31	Reference Range Image: Arrow of the second secon	Kynurenine Marke Kynurenic Acid Quinolinic Acid Kynurenic / Quinolinic Ratio Xanthurenic Acid Catecholamine Mark Homovanillic Acid Vanilmandelic Acid 3-Methyl-4-OH- phenylglycol Serotonin Markers 5-OH-indoleacetic Acid Toxin & Detoxifi Pyroglutamic Acid a-Ketophenylacetic Acid (from Styrene) a-Hydroxyisobutyric Acid	ers (Vitamin B6)	Reference Range 2.3 <= 7.1 <= 9.1 62 >= 0.44 <= 0.96 1.2-5.3 0.4-3.6 0.02-0.22 3.8-12.1 Reference Range 7 16-34 <= 0.46 <= 6.7

Methodology: GCMS, LC/MS/MS, Alkaline Picrate, Colorimetric

Organic Acid Reference Ranges are Age Specific

Results - Oxalates, Oxidative Stress, Pathways

Results - Amino Acids

Amino Acids (FMV)					
Nutritionally E	Essential Amino Acids		Intermediary N	letabolites	
Amino Acid		Reference Range	B-Vitamin Marke	ers	Reference Range
Arginine	12	3-43	α-Aminoadipic Acid	21	2-47
Histidine	451 ◆	124-894	α-Amino-N-butyric Acid	8	2-25
Isoleucine	16	3-28	β-Aminoisobutyric Acid	118	11-160
Leucine		4-46	Cystathionine		2-68
Lysine	60	11-175	Urea Cycle Mark	kers	
Methionine		2-18	Citrulline	1.0	0.6-3.9
Phenylalanine		8-71	Ornithine	9	2-21
Taurine	25 126	21-424	Urea •	208	168-465
Threonine		17-135	Glycine/Serine I	Metabolites	long creatinine
Tryptophan		5-53	Glycine	721	95-683
Valine		7-49	Serine	96	40-163
Nonessential	Protein Amino Acids		Ethanolomina	217	50 225
Amino Acid		Reference Range	Ethanolamine	5	50-255
Alanine	444	63-356	Phosphoethanolamine	CDL	1-13
Asparagine	98	25-166	Phosphoserine	2.	3-13 .6
Aspartic Acid	<dl< td=""><td><= 14</td><td>Sarcosine</td><td></td><td><= 1.1 Reference</td></dl<>	<= 14	Sarcosine		<= 1.1 Reference
Cysteine	67	8-74	Dietary Peptid	e Related Markers	Range
Cystine	51	10-104	Anserine (dipeptide)	8.6 ◆	0.4-105.1
γ-Aminobutyric Acid	2	<= 5	Carnosine (dipeptide)	280	1-28
Glutamic Acid	19	4-27	1-Methylhistidine	•	38-988
Glutamine	320 ◆	110-632	3-Methylhistidine	3	44-281
Proline	9 ••••••••••••••••••••••••••••••••••••	1-13	β-Alanine		<= 22
Tyrosine	100	11-135			
Creatinine Co	ncentration	Reference Range			
Creatinine◆	6.0	3.1-19.5 mmol/L			

Amino Acid reference ranges are age specific.

Methodology: LC/MS/MS, Alkaline Picrate

Results - Essential and Metabolic Fatty Acids

Essential & Metabolic Fatty Acids Markers (RBCs)					
Omega-3 Fat	ty Acids		Omega-6 Fa	tty Acids	
Analyte		Reference Range	Analyte		Reference Range
α-Linolenic (ALA) 18:3 n3 Eicosapentaenoic	(cold water fish, flax, walnut) 0.23 0.40	>= 0.09 wt %	Linoleic (LA) 18:2 n6 y-Linolenic	(vegetable oil, grains, most meats, dairy) 17.1 ♦ 0.12	10.5-16.9 wt % 0.03-0.13 wt %
(EPA) 20:5 n3 Docosapentaenoic (DPA) 22:5 n3 Docosahexaenoic (DHA) 22:6 n3	1.40 2.3 4.4	>= 1.14 wt % >= 2.1 wt %	(GLA) 18:3 no Dihomo-γ-linolenic (DGLA) 20:3 no Arachidonic (AA) 20:4 no	1.57 15 2.09	>= 1.19 wt % 15-21 wt %
% Omega-3s Omega-9 Fat Analyte	ty Acids	>= 3.8 Reference Range	Docosatetraenoic (DTA) 22:4 n6 Eicosadienoic 20:2 n6 % Omega-6s	0.21 • 36.2	1.50-4.20 wt % <= 0.26 wt % 30.5-39.7
Oleic 18:1 n9 Nervonic 24:1 n9	(olive oil) 13 ◆ 2.2 ◆ 15.5	10-13 wt % 2.1-3.5 wt %	Monounsatu Omega-7 Fatt Palmitoleic	urated Fatty Acids ty Acids	Reference Range <= 0.64 wt %
Saturated Fa	tty Acids	Deference	16:1 n7 Vaccenic 18:1 n7	0.91	<= 1.13 wt %
Analyte Palmitic C16:0 Stearic	(meat, dairy, coconuts, palm oils) 20 18	Reference Range	Trans Fats Elaidic 18:1 n9t		<= 0.59 wt %
C18:0 Arachidic C20:0 Behenic C22:0 Tricosanoic C23:0	0.27	0.22-0.35 wt % 0.92-1.68 wt % 0.12-0.18 wt %	Linoleic / DGLA 18:2 n6 / 20:3 n6 Cardiovascu Analyte	Upregulated Functional Impaired 10.9	6.0-12.3 Reference Range
Lignoceric C24:0 Pentadecanoic C15:0 Margaric C17:0 % Saturated Fats	0.12 0.30 42.1	2.1-3.8 wt % 0.07-0.15 wt % 0.22-0.37 wt % 39.8-43.6	Omega-6s / Omega-3s AA / EPA 20:4 n6 / 20:5 n3 Omega-3 Index The Essential Fatty	8.3 38 2.7 Acid reference ranges are based on an a	3.4-10.7 12-125 >= 4.0 dult population.

Results - Fatty Acid Metabolism

Fatty Acid Metabolism

NutrEva

Results - Elemental Markers

Elemental Markers					
Nutrient E	lements		Toxic Elements	s*	
Element		Reference Range	Element		Reference Range
Copper <i>(plasma)</i>	75.5	75.3-192.0 mcg/dL	Lead 1.	.18 ♦ 3.80	<= 2.81 mcg/dL
Magnesium <i>(RBC)</i>	12.4	30.1-56.5 mcg/g	Mercury	\$	<= 4.35 mcg/L
Manganese (whole blood)	3.041	3.0-16.5 mcg/L	Arsenic	0.98	<= 13.7 mcg/L
Potassium <i>(RBC)</i>	106	2,220-3,626 mcg/g	Cadmium	•	<= 1.22 mcg/L
Selenium <i>(whole blood)</i>		109-330 mcg/L	* All toxic Elements are n Lead. Mercury, and Cadr	neasured in whole blood. The mium are derived from the 95t	reference ranges for
Zinc <i>(plasma)</i>		64.3-159.4 mcg/dL	NHANES		

The Elemental reference ranges are based on an adult population.

Elemental testing performed by Genova Diagnostics, Inc. 3425 Corporate Way, Duluth, GA 30096 - Robert M. David, PhD, Lab Director - CLIA Lic. #11D0255349 - Medicare Lic. #34-8475

Commentary

For more information regarding NutrEval clinical interpretation, please refer to the NutrEval Support Guide at www.gdx.net/nutrevalguide.

Biomarkers Tested in the NutrEval Profiles

Amino Acids, FMV Urine or Plasma	Organic Acids
β-Alanine	α-Hydroxyisobutyric Acid (from MTBE)
a-Amino-N-butyric Acid	α-Keto-β-Methylvaleric Acid
α-Aminoadipic Acid	α-Ketoadipic Acid
γ-Aminobutyric Acid	a-Ketoglutaric Acid
β-Aminoisobutyric Acid	a-Ketoisocaproic Acid
1-Methylhistidine	a-Ketoisovaleric Acid
3-Methylhistidine	α-Ketophenylacetic Acid (from Styrene)
Alanine	a-Hydroxybutyric Acid
Anserine (dipeptide) (FMV only)	β-OH-β-Methylglutaric Acid
Arginine	β-OH-Butyric Acid
Asparagine	3-Hydroxyisovaleric Acid
Aspartic Acid	3-Hydroxyphenylacetic Acid
Carnosine (dipeptide) (FMV only)	3-Hydroxyproprionic Acid
Citrulline	3-Methyl-4-OH-phenylglycol
Creatinine (FMV only)	4-Hydroxyphenylacetic Acid
Cystathionine	5-OH-indoleacetic Acid
Cysteine (FMV only)	Adipic Acid
Cystine	D-Arabinitol
Ethanolamine	Benzoic Acid
Glutamic Acid	Cis-Aconitic Acid
Glutamine	Citramalic Acid
Glycine	Citric Acid
Histidine	DHPPA
Isoleucine	Formiminoglutamic Acid
Leucine	Glutaric Acid
Lysine	Hippuric Acid
Methionine	Homovanillic Acid
Ornithine	Indoleacetic Acid
Phenylalanine	Isocitric Acid
Phosphoethanolamine	Isovalerylglycine
Phosphoserine	Kynurenic / Quinolinic Ratio
Proline	Kynurenic Acid
Sarcosine	Lactic Acid
Serine	Malic Acid
Taurine	Methylmalonic Acid
Threonine	Orotic Acid
Tryptophan	Phenylacetic Acid
Tyrosine	Pyroglutamic Acid
Urea	Pyruvic Acid
Valine	Quinolinic Acid
	Suberic Acid
	Succinic Acid

Organic Acids	Nutrient & Toxic Elements
Tartaric Acid	Cadmium
Vanilmandelic Acid	Arsenic
Xanthurenic Acid	Mercury
Oxalate Markers	Lead
Glyceric Acid	Copper
Glycolic Acid	Magnesium
Oxalic Acid	Manganese
Oxidative Stress Analysis	Potassium
Glutathione (Whole Blood)	Selenium
Coenzyme Q10 (Ubiquinone)	Zinc
Lipid Peroxides, Urine	Add-on Testing
8-OHdG, Urine	Vitamin D (serum sample)
Essential & Metabolic Fatty Acids Analysis	Genomic Add-on Markers
AA/EPA ratio	APO E (C112R + R158C)
Arachidic Acid	COMT (V158M)
Arachidonic Acid	MTHFR Combined (A1298C + C677T)
Behenic Acid	TNFA
Dihomo-γ-linolenic Acid	
Docosahexaenoic Acid	Beferences
Docosapentaenoic Acid	1. Baranyi A, Amouzadeh-Ghadikolai Q, von Lewinski D, et al. Branched-Chain Amino Acids as New Biomarkers of Major Depression - A Novel Neurobiology of
Docosatetraenoic Acid	Mood Disorder. PloS one. 2016;11(8):e0160542-e0160542. 2 Su K-P Matsuoka Y Pae C-II. Omena-R Polyuncaturated Fatty Arids in Prevention of Mood and Anviety Disorders. Clin Psychopharmacol Neurosci
Eicosadienoic Acid	2. 2017; 13(2):129-137.
Eicosapentaenoic Acid	3. Harris WS. The omega-3 index: from biomarker to risk marker to risk factor. Curr Atheroscler Rep. 2009;11(6):411. 4. Eathore F. Massa F. Dietary fats and cardiovascular health: a summary of the scientific evidence and current debate. Int LEond Sci Nutr. 2018;69(8):916-927
Elaidic Acid	 active c, massa c, orecary inclaim control could manned by the science enderine enderine and unren debate. In J 1000 Sci Nutl. 2010;05(9):510-521. O'Connell BS. Select vitamins and minerals in the management of diabetes. Diab Spect. 2001;14(3):133-148.
Lignoceric Acid	6. Wang X, England A, Sinclair C, Merkosky F, Chan CB. Trans-11 vaccenic acid improves glucose homeostasis in a model of type 2 diabetes by promoting insulin secretion via CPR40. LEurot Foods. 2019;60:103410
Linoleic Acid	 Nozaki S, Tanaka M, Mizuno K, et al. Mental and physical fatigue-related biochemical alterations. Nutrition. 2009;25(1):51-57.
α-Linolenic Acid	 Schlemmer M, Suchner U, Schäpers B, et al. Is glutamine deficiency the link between inflammation, malnutrition, and fatigue in cancer patients? Clin Nutr. 2015;32(6):1258-1265
γ-Linolenic Acid	 Simopoulos AP. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients. 2016;8(3):128.
Linoleic/DGLA ratio	10. Zheng Y, Ceglarek U, Huang T, et al. Weight-loss diets and 2-y changes in circulating amino acids in 2 randomized intervention trials. Am J Clin Nutr. 2016;10:2(2):505;511
Margaric Acid	2016, 1022/302911. 11. Beydoun MA, Kaufman JS, Satia JA, Rosamond W, Folsom AR. Plasma n-3 fatty acids and the risk of cognitive decline in older adults: the Atherosclerosis Risk in
Nervonic Acid	Communities Study. Am J Clin Nutr. 2007;85(4):1103-1111. 12 Kilho S. Niiral C. Colzato L. et al. Enod for thought: accordation between dietary tyrosing and contitive performance in younger and older adults. Psych Res
Oleic Acid	2/12/ value 3, value 3, value 2, call food for thought association between useaily thosine and toginture performance in younget and value adults 1 systemes. 2019;83(6):1097-1106.
Omega 3 Index	 Gleeson M. Dosing and efficacy of glutamine supplementation in human exercise and sport training. J Nutr. 2008;138(10):20455-2049s. Woolf K. Manora MM. R.vitamins and everyise does everyise alter requirements? Int L Sport Nutr. Fx Matab. 2006;16(5):453-484.
Omega 6s/Omega 3s ratio	 Hour H, Manne HML, D'Hamma and Cected actors are requirements into Sport Nutl CENetable 2000, 10(3):453–404. Polge A, Bancel E, Bellet H, et al. Plasma amino acid concentrations in elderly patients with protein energy malnutrition. Age Ageing. 1997;26(6):457–462.
Palmitic Acid	
Palmitoleic Acid	
Pentadecanoic Acid	
Stearic Acid	
Tricosanoic Acid	
Vaccenic Acid	

NutrEval FMV (First Morning Void)

• The **NutrEval** FMV provides an Amino Acids analysis via urine, and is optimal for functional assessment of vitamin and mineral nutritional needs.

NutrEval Plasma

• The **NutrEval** Plasma provides an Amino Acids analysis via blood, and is optimal for determining patient amino acid status and nutritional needs.

Turnaround times, sample reports, and additional information is available online at www.gdx.net

• Specimen Requirements

• FMV Urine and Blood, see kit instructions for specifics